#line 1 "test/proj.test.cpp"
#include <bits/stdc++.h>
using namespace std;
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_A"
#define ERROR 1e-9
#line 3 "math/line.cpp"
using namespace std;
#line 3 "math/point.cpp"
using namespace std;
constexpr long double GEOMETRY_EPS = 1e-8;
// sgn
// a > 0なら1, a = 0なら0,a < 0なら-1を返す.
constexpr inline int sgn(const long double a) { return (a < -GEOMETRY_EPS ? -1 : (a > GEOMETRY_EPS ? 1 : 0)); }
constexpr inline int sgn(const int a) { return (a < 0 ? -1 : (a > 0 ? 1 : 0)); }
// 2次元座標クラス
// T = int,long doubleなど
template <typename T>
struct Point {
T x, y;
constexpr inline Point(T x = 0, T y = 0) : x(x), y(y) {}
// unary operator: +,-
constexpr inline Point operator+() const { return *this; }
constexpr inline Point operator-() const { return Point(-x, -y); }
// +=,-=,*=,/=
constexpr inline Point &operator+=(const Point &q) {
x += q.x;
y += q.y;
return *this;
}
constexpr inline Point &operator-=(const Point &q) {
x -= q.x;
y -= q.y;
return *this;
}
template <typename U>
constexpr inline Point &operator*=(U a) {
x *= a;
y *= a;
return *this;
}
template <typename U>
constexpr inline Point &operator/=(U a) {
x /= a;
y /= a;
return *this;
}
// +,-,*,/
constexpr inline Point operator+(const Point &q) const { return Point(*this) += q; }
constexpr inline Point operator-(const Point &q) const { return Point(*this) -= q; }
template <typename U>
constexpr inline Point operator*(const U &a) const { return Point(*this) *= a; }
template <typename U>
constexpr inline Point operator/(const U &a) const { return Point(*this) /= a; }
// <,> の比較は辞書順の比較, つまりx,yの順に大きい方を確認する.
inline bool operator<(const Point &q) const { return (sgn(x - q.x) != 0 ? sgn(x - q.x) < 0 : sgn(y - q.y) < 0); }
inline bool operator>(const Point &q) const { return (sgn(x - q.x) != 0 ? sgn(x - q.x) > 0 : sgn(y - q.y) > 0); }
inline bool operator==(const Point &q) const { return (sgn(x - q.x) == 0 && sgn(y - q.y) == 0); }
friend ostream &operator<<(ostream &os, const Point &p) { return os << p.x << ' ' << p.y; }
friend istream &operator>>(istream &is, Point &p) { return is >> p.x >> p.y; }
};
// *,/
template <typename T, typename U>
inline Point<T> operator*(const U &s, const Point<T> &p) { return {s * p.x, s * p.y}; }
template <typename T, typename U>
inline Point<T> operator/(const U &s, const Point<T> &p) { return {p.x / s, p.y / s}; }
// dot
// p,qの内積を計算する.
template <typename T>
constexpr inline T dot(const Point<T> &p, const Point<T> &q) { return p.x * q.x + p.y * q.y; }
// cross
// p,qの外積を計算する
template <typename T>
constexpr inline T cross(const Point<T> &p, const Point<T> &q) { return p.x * q.y - q.x * p.y; }
// length2
// ベクトルpの長さ(原点からの距離)の2乗を求める.
template <typename T>
constexpr inline T length2(const Point<T> &p) { return dot(p, p); }
// length
// ベクトルpの長さ(原点からの距離)を求める.
template <typename T>
inline long double length(const Point<T> &p) { return sqrt((long double)length2(p)); }
// dist
// 点pと点qの間の距離を求める.
template <typename T>
inline long double dist(const Point<T> &p, const Point<T> &q) { return length(p - q); }
// sgn_area
// p,q,rがつくる三角形の符号付き面積
template <typename T>
constexpr inline long double sgn_area(const Point<T> &p, const Point<T> &q, const Point<T> &r) { return (long double)cross(q - p, r - p) / 2.0; }
// area
// p,q,rがつくる三角形の面積
template <typename T>
constexpr inline long double area(const Point<T> &p, const Point<T> &q, const Point<T> &r) { return abs(sgn_area(p, q, r)); }
// normalize
// 点pを長さ1に正規化した点を返す.
template <typename T>
inline Point<long double> normalize(const Point<T> &p) { return (Point<long double>)p / length(p); }
// rotation
// 点pを反時計回りにargだけ回転させた点を返す. (argはradで測る)
template <typename T>
inline Point<long double> rotation(const Point<T> &p, double arg) { return Point(cos(arg) * p.x - sin(arg) * p.y, sin(arg) * p.x + cos(arg) * p.y); }
// angle
// 点pのx軸の正の方向から反時計回りに測った角度を[-pi,pi]で返す.
template <typename T>
inline long double angle(const Point<T> &p) { return atan2(p.y, p.x); }
// rot90
// 点pを反時計回りに90度回転
template <typename T>
constexpr inline Point<T> rot90(const Point<T> &p) { return Point(-p.y, p.x); }
// iSP
// 異なる3点a,b,cの位置関係を返す.
template <typename T>
int iSP(const Point<T> &a, const Point<T> &b, const Point<T> &c) {
if (sgn(cross(c - b, a - b)) > 0) return 1; // ab bc __/: +1
if (sgn(cross(c - b, a - b)) < 0) return -1; // ab bc --\: -1
if (sgn(dot(a - b, c - b)) < 0) return 2; // abc ---: +2
if (sgn(dot(a - c, b - c)) < 0) return -2; // acb ---: -2
return 0; // bac ---: 0
}
// example:
// using P = Point<int>;
// using P = Point<long double>;
#line 6 "math/line.cpp"
/* Line */
constexpr long double GEOMETRY_INFTY = 1e9;
// 無限遠点
template <typename T>
constexpr Point<T> INFTY(GEOMETRY_INFTY, GEOMETRY_INFTY);
// 直線
template <typename T>
struct Line {
Point<T> begin, end;
Line() = default;
Line(const Point<T> &begin, const Point<T> &end) : begin(begin), end(end) {}
constexpr inline Point<T> vec() const { return end - begin; }
constexpr inline Point<T> countervec() const { return begin - end; }
};
// 半直線
template <typename T>
using Ray = Line<T>;
// 線分
template <typename T>
using Segment = Line<T>;
// ll_intersection
// 直線同士の交点を返す.
template <typename T>
Point<T> ll_intersection(const Line<T> &l1, const Line<T> &l2) {
if (sgn(cross(l1.vec(), l2.vec())) == 0) return INFTY<T>; // parallel or partially matched
return l1.begin + l1.vec() * cross(l2.vec(), l2.begin - l1.begin) / cross(l2.vec(), l1.vec()); // Intersection
}
// ss_intersection
// 線分同士の交点を求める. (線分が交わるかどうか, 交点)を返す.
template <typename T>
pair<bool, Point<T>> ss_intersection(const Segment<T> &s1, const Segment<T> &s2) {
bool is_intersect = (iSP(s2.begin, s1.begin, s1.end) * iSP(s2.end, s1.begin, s1.end) <= 0 && iSP(s1.begin, s2.begin, s2.end) * iSP(s1.end, s2.begin, s2.end) <= 0);
return {is_intersect, ll_intersection(s1, s2)};
}
// sr_intersection
// 線分と半直線の交点を求める.
template <typename T>
pair<bool, Point<T>> sr_intersection(const Segment<T> &s, const Ray<T> &r) {
Point ret = ll_intersection(s, r);
if (ret == INFTY<T>) return {false, ret};
Point sv1 = s.begin - ret, sv2 = s.end - ret;
Point rv1 = ret - r.begin, rv2 = r.end - r.begin;
if (sgn(dot(sv1, sv2)) <= 0 && sgn(dot(rv1, rv2)) > 0) return {true, ret};
return {false, ret};
}
// ison
// 点pが線分s上の点かどうかを判定する.
template <typename T>
constexpr inline bool ison(const Point<T> &p, const Segment<T> &s) { return iSP(p, s.begin, s.end) == 0; }
// pl_distance
// 点pと直線lの距離を求める.
template <typename T>
long double pl_distance(const Point<T> &p, const Line<T> &l) { return abs((long double)cross(l.vec(), p - l.begin) / length(l.vec())); }
// ps_distance
// 点pと線分sの距離を求める.
template <typename T>
long double ps_distance(const Point<T> &p, const Segment<T> &s) {
if (sgn(dot(s.vec(), p - s.begin)) < 0 || sgn(dot(s.countervec(), p - s.end)) < 0) {
return min(dist(p, s.begin), dist(p, s.end));
}
return pl_distance(p, s);
}
// ss_distance
// 線分s1と線分s2の距離を求める.
template <typename T>
long double ss_distance(const Segment<T> &s1, const Segment<T> &s2) {
if (ss_intersection(s1, s2).first) return 0;
return min({ps_distance(s1.begin, s2), ps_distance(s1.end, s2), ps_distance(s2.begin, s1), ps_distance(s2.end, s1)});
}
// proj
// ベクトルpを直線lに射影した点を返す.
Point<long double> proj(const Point<long double> &p, const Line<long double> &l) { return l.begin + normalize(l.vec()) * (dot(l.vec(), p - l.begin) / length(l.vec())); }
// reflection
// ベクトルpを直線lに対して反転させた点を返す.
Point<long double> reflection(const Point<long double> &p, const Line<long double> &l) { return proj(p, l) * 2 - p; }
// vertical_bisector
// 点p,qの垂直二等分線を求める.
Line<long double> vertical_bisector(const Point<long double> &p, const Point<long double> &q) {
Point mid = (p + q) / 2, vec = rot90(p - q);
return Line(mid, mid + vec);
}
// example:
// using P = Point<int>;
// using L = Line<int>;
// using S = Segment<int>;
// using R = Ray<int>;
//
// using P = Point<long double>;
// using L = Line<long double>;
// using S = Segment<long double>;
// using R = Ray<long double>;
#line 7 "test/proj.test.cpp"
using P = Point<long double>;
using L = Line<long double>;
int main() {
cout << fixed << setprecision(20);
P p1, p2;
cin >> p1 >> p2;
L l = Line(p1, p2);
int q;
cin >> q;
for (int i = 0; i < q; i++) {
P p;
cin >> p;
cout << proj(p, l) << '\n';
}
return 0;
}