test/partition_number.test.cpp
Depends on
Code
#include <bits/stdc++.h>
using namespace std;
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_J"
#include "../math/mint.cpp"
#include "../math/partition_number.cpp"
using mint2 = ModInt<1000000007>;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
int n, k;
cin >> n >> k;
PartitionNumber<mint2> pn(n, k);
pn.solve();
cout << pn(n, k) << '\n';
return 0;
}
#line 1 "test/partition_number.test.cpp"
#include <bits/stdc++.h>
using namespace std;
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_J"
#line 3 "math/mint.cpp"
using namespace std;
template <int MOD>
struct ModInt {
public:
long long x;
ModInt(long long x = 0) : x((x % MOD + MOD) % MOD) {}
constexpr ModInt &operator+=(const ModInt a) noexcept {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
constexpr ModInt &operator-=(const ModInt a) noexcept {
if ((x += MOD - a.x) >= MOD) x -= MOD;
return *this;
}
constexpr ModInt &operator*=(const ModInt a) noexcept {
(x *= a.x) %= MOD;
return *this;
}
constexpr ModInt &operator/=(const ModInt a) noexcept { return *this *= a.inverse(); }
constexpr ModInt operator+(const ModInt a) const noexcept { return ModInt(*this) += a.x; }
constexpr ModInt operator-(const ModInt a) const noexcept { return ModInt(*this) -= a.x; }
constexpr ModInt operator*(const ModInt a) const noexcept { return ModInt(*this) *= a.x; }
constexpr ModInt operator/(const ModInt a) const noexcept { return ModInt(*this) /= a.x; }
friend constexpr std::ostream &operator<<(std::ostream &os, const ModInt<MOD> a) noexcept { return os << a.x; }
friend constexpr std::istream &operator>>(std::istream &is, ModInt<MOD> &a) noexcept {
is >> a.x;
a.x = (a.x % MOD + MOD) % MOD;
return is;
}
ModInt inverse() const noexcept { // x ^ (-1)
long long a = x, b = MOD, p = 1, q = 0;
while (b) {
long long d = a / b;
a -= d * b;
swap(a, b);
p -= d * q;
swap(p, q);
}
return ModInt(p);
}
ModInt pow(long long N) const noexcept { // x ^ N
ModInt a = 1;
ModInt y = this->x;
while (N) {
if (N & 1) a *= y;
y *= y;
N >>= 1;
}
return a;
}
};
template <typename U, int MOD>
inline ModInt<MOD> operator*(const U &c, const ModInt<MOD> &a) { return {c * a.x}; }
using mint = ModInt<998244353>;
#line 3 "math/partition_number.cpp"
using namespace std;
// PartionNumber
// n個の区別できないものをk個の区別できない箱に0個以上に分割する方法が何通りあるか求める.
// これをP(n,k)とするとP(n,0) = 0 (n > 0)
template <typename T>
struct PartitionNumber {
int n, k;
vector<vector<T>> dp;
PartitionNumber(int n, int k) : n(n), k(k) {
dp.assign(n + 1, vector<T>(k + 1, T(0)));
}
// solve
// 0 <= i <= n,0 <= j <= kの分割数を求める.
// 計算量: O(nk)
void solve() {
dp[0][0] = T(1);
for (int i = 0; i <= n; i++) {
for (int j = 1; j <= k; j++) {
dp[i][j] = dp[i][j - 1];
if (i - j >= 0) dp[i][j] += dp[i - j][j];
}
}
}
// P(i,j)を返す.
// 制約: 0 <= i <= n,0 <= j <= k
T operator()(int i, int j) {
return dp[i][j];
}
};
#line 7 "test/partition_number.test.cpp"
using mint2 = ModInt<1000000007>;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
int n, k;
cin >> n >> k;
PartitionNumber<mint2> pn(n, k);
pn.solve();
cout << pn(n, k) << '\n';
return 0;
}
Back to top page